An Analysis of the Impact of ICT Investment on Productivity in Developing Countries: Evidence from Cameroon

Arsene Honore Gideon Nkama*

Abstract
To what extent have investments in Information and Communication Technologies (ICT) contributed to productivity growth in Cameroon? This paper explores the relationship between productivity and investment in ICT in Cameroon at the level of firms in 2004. Using cross-sectional data and applying a Cobb-Douglas function, the study reveals that investment in ICT has no impact on productivity, as the estimated coefficient of ICT investment on productivity is not significant. Also, ICT investment has no impact on labour productivity and labour intensity. These findings differ from Chowdhury and Wolf (2002) who found that ICT investment has a negative and significant impact on labour productivity in East Africa. In Cameroon labour remains the key factor of value added growth. This seems to be realistic as the country has a growing workforce that tends to slow down salaries. Since labour is the abundant factor, it is profitable for firms to increase their production by recruiting additional units of labour. If ICT investment contributes to rapid globalization of economies, it does not yet contribute to productivity growth in Cameroon.

Résumé

* Faculty of Economics and Management, University of Yaoundé II, Yaoundé, Cameroon. E-mail: ahgnkama@yahoo.com

Introduction

Evidence about the contribution of Information and Communication Technologies (ICT) investment to productivity and growth has been very controversial. In developed countries and especially among the G-7 countries, ICT investment has had a large impact on productivity growth in the United States, for example, but in Japan, the United Kingdom and France labour productivity did not increase despite a high level of investment in ICT (IMF 2001). In developing countries, this controversy still persists.

In the context of developed countries, Jorgensen et al., (2002) analysed the sources of US labour productivity growth in the post-1995 period and presented projections for both output and labour productivity growth for the next decade. They found that ICT played a substantial role in the US economy by reviving productivity. Their projections put the rate of productivity growth at 2.1 percent per year over the next decade. Daveri (2002) showed that throughout 1992-2001, even if two thirds of the European Union population reached or came much closer to the same levels of ICT diffusion as the US, ICT have so far delivered limited overall productivity gains in Europe. Hempell (2002) found significant productivity effects of ICT on German service sector. In many other studies, empirical evidence for the effects of ICT investment on firms’ performance in the context of industrialized countries has reported positive effects in the case of US large enterprises (Brynjolfsson and Hitt 2000 for example). Using the production function approach, Brynjolfson and Hitt (1996) found that the gross marginal product of computer capital ranges from 56 percent to 68 percent while the gross marginal product on non-computer capital is between 4.14 percent and 6.86 percent in the United States firm-level data.

An important number of studies have jointly considered both developed and developing countries. Dewan and Kraemer, 2000 (Pohjola 2001) have
estimated a Cobb-Douglas function in a cross-countries analysis using GDP as output and ICT capital, non-ICT capital and labour hours as inputs. Based on data on 22 developed countries and 14 developing countries over the period 1985-1993, results indicate that the returns from ICT capital investments are positive and statistically significant for developed countries but not significant for developing countries. In developed countries, the output elasticities of ICT capital, non-ICT capital and labour are respectively 0.057, 0.160 and 0.823. In developing countries results indicate that ICT investments are not productive as the 0.593 ICT elasticity is statistically equal to zero. As pointed out by Pohjola (op cit.) and contrary to results from developed countries, the authors did not include human capital in the production function. Investment in ICT being strongly correlated with investment in human capital, this seems to explain differences in results in developed and developing countries. In exploring the impact of information technology investment on economic growth in a cross-section of 39 countries in the period 1980-1995, Pohjola (2000) applied the augmented version of the neo-classical growth model. Results indicate that for the full sample, physical capital has been a key factor in the growth of GDP per worker in both developed and developing countries whereas human capital and information technology were shown to have had no strong impact. However, in the smaller sample of 23 OECD countries, information technology has had a strong impact on growth. An explanation for the poor or non-existent impact of ICT in developing countries could be the fact that developing countries have not yet invested enough in ICT. This is not because ICT is not a priority in developing countries, but because developing countries lag behind developed countries in terms of investment level. The diffusion and introduction gap of ICT between developing and developed countries – the former having experienced ICT many years after the latter – also explain this conclusion. As ICT is expected to take time before having its full effects on productivity, it might be normal that ICT’s impact in developed countries is greater than that in developing countries. Also, the intensity of ICT use may explain the difference. If one can find many studies centred on developed countries, it should be recognized that less has been done for developing countries and especially sub-Saharan Africa.

In developing countries, some recent studies on small and medium scale enterprises in the manufacturing sector in India have reported a positive link between ICT capital and productivity (Muller-Falke 2001) and between ICT adoptions and export performance (Lal 1996). In sub-Saharan Africa, Chowdhury and Wolf (2002) assessed the uses of information and communication technologies and their impact on the economic performance of small and medium scale enterprises of Kenya, Tanzania and Uganda.
Findings suggest that the diffusion of ICT among East African small and medium scale enterprises is both industry and country specific. The model, based on a Cobb-Douglas specification, is modified to take into account ICT impact on labour productivity, ICT impact on return on investment and ICT impact on market expansion. Empirical findings suggest that investment in ICT has a negative impact on labour productivity and a positive impact on general market expansion. But such investment does not have any significant impact on enterprises’ return nor does it determine enterprises’ exporter status. This approach is very interesting in the sense that it underlines the relationship between labour intensity, labour productivity and ICT investments.

This paper is an attempt to contribute to above-mentioned debate by measuring the effect of ICT investment on enterprise productivity in Cameroon. The analysis, concentrated on both secondary and tertiary sectors, also distinguishes small size from large size enterprises. The paper is organized as follows. Section one is a brief review of Cameroon’s ICT infrastructure that gives an idea of the ICT environment within which firms operate in Cameroon. Section two presents the analytical framework. Data used in the analysis are presented in section three, followed by empirical results in section four. Section five presents some implications of the results. In section six, the last section, I discuss relevant policy recommendations.

Brief Profile of Cameroon’s ICT Infrastructure

Radios, televisions, fixed phones, mobile phones, personal computers, and the internet are the main ICT devices used to study access to the information society. Among these devices, radios are the most widespread in developing countries, followed by televisions. In fact, the availability of radios is relatively high as compared to other ICT devices in developing countries. One major reason is that radios can operate with batteries (rather than requiring a main supply of electricity) and their prices are relatively affordable for low income persons. For the other ICT devices, access to electricity has limited their penetration in developing countries as the development of new ICT tends to be dependent on the availability of energy. As an example, it is very likely that in a region without electricity, there will be few if any computers with access to internet.

In Cameroon, access to electricity is a major constraint for economic development in general and ICT penetration in particular. In the rural areas with around 53 percent of the total population, access to electricity is limited to 23 percent (compared to 50 percent for Côte d’Ivoire for example) and lags far behind urban areas where about 88 percent of the population had access to electricity in 2001 (Cameroon Poverty Reduction Strategy Paper).
Compared to Senegal and Côte d’Ivoire, Cameroon lags behind in terms of access to ICT investment as one can observe in Table 1. Total telephone subscribers, main telephone lines, cellular subscribers, internet users and personal computer per 100 inhabitants are not only lower than the African average level, but also lower than those countries with relatively same level of development. This differential in ICT penetration might be a source of differentials in growth potential. In fact it can be expected that countries with recent and low ICT penetration perform lower than those with long-term, deep and rapid penetration in ICT.

Theoretical Framework

Before presenting the empirical results, it would be appropriate to briefly present the structured framework that helps interpret the regressions that follow. The framework focuses on two main points: the estimation of production elasticity with respect to ICT investment and the measurement of the impact of ICT on labour intensity and labour productivity.

The Output Elasticity of ICT Investment

To identify the channels through which ICT may affect the output or productivity of firms, let us consider the production function approach that can be summarized as follows. Suppose the production function:

$$Y_i = F(\text{ICT}_i, \text{NICT}_i, L_i)$$ \hspace{1cm} (1)

Where, for firm i the value added Y is produced from inputs consisting of ICT capital (ICT), non-ICT capital (NICT), and labor (L).
Suppose that (1) assumes the simple Cobb-Douglas form and suppose also that the \(\alpha_l \)'s are constant from one firm to another, one can write:

\[
Y_i = A \cdot ICT_i^{\alpha_1} \cdot NICT_i^{\alpha_2} \cdot L_i^{\alpha_3}.
\]

(2)

Taking natural logarithms, one obtains the following:

\[
\log Y_i = \log A + \alpha_1 \log ICT_i + \alpha_2 \log NICT_i + \alpha_3 \log L_i.
\]

(3)

Special attention will focus on \(\alpha_1 \), that represents the elasticity of production (value added) with respect to the use of ICT capital. In other words, \(\alpha_1 \) is the output elasticity of ICT investment. If \(\alpha_1 > 1 \), a one-percent increase in ICT investment would lead to more than one-percent increase in output. In such a situation, increasing ICT investment in the economy would be very important for boosting overall economic growth. The importance of growth could therefore be explained by the level of ICT investment in sectors accounting for a higher percentage to aggregated output. On the contrary, a one-percent increase in ICT investment would generate less than one-percent increase in output. Comparison of \(\alpha_1 \) with \(\alpha_2 \) and \(\alpha_3 \) would ameliorate the analysis. As an example, if for a country \(\alpha_1 > \alpha_2 \) (i.e., 2, 3) it would be more efficient for this country to increase its ICT investment as compared to non-ICT investment and labor in order to accelerate growth. On the contrary, if for example \(\alpha_1 < \alpha_2 \) (i.e., 2, 3) more emphasis would be put on non-ICT capital and labor if the country aims at boosting growth. \(\alpha_1 \) equal to zero means that ICT investment does not affect productivity growth; consequently, increasing investment on such assets could in a long run be economically costly or non-viable.

The Impact of ICT on Labour Intensity and Labour Productivity

ICT investment can enhance enterprise performance due to some indirect cost savings in labour costs and by increased labour productivity. It can also affect the direct cost of firms’ inputs. An obvious example is when ICT investment reduces information costs. ICT also affects inputs allocation. It can have both substitution and complementary effects. It is possible that ICT investments increase employment at the level of firms. On the other hand, it is also possible to imagine that increased ICT investment could lead to job reductions as firms increase ICT intensity (substitution between ICT capital and labour). Both situations affect labour productivity. To assess the impact of ICT investments on labour intensity and labour productivity, let us consider the following production function (Berndt and Morrison 1995).
\(Y_i = F(K^*_i, L_i) \) \tag{4}

Where, for firm \(i \) production \(Y \) is obtained from inputs consisting of quality-adjusted stock of aggregate capital \(K^* \) and labour \(L \).

Suppose that (4) assumes the simple Cobb-Douglas form and suppose also that the \(\alpha_i' \)'s are constant from one firm to another. One can write:

\[Y_i = A K^*_i \alpha L^\beta_i \] \tag{5}

Taking natural logarithms, one obtains the following:

\[\log Y_i = \log A + \alpha \log K^*_i + \beta \log L_i \] \tag{6}

Suppose \(K^* \) is the quality-adjusted stock of aggregate capital and suppose it can be divided into ICT capital (ICT) and non-ICT capital (NICT) as follows.

\[K^*_i = K_i (ICT_i / K_i) \delta (NICT_i / K_i) \gamma \] \tag{7}

In logarithm form one obtains:

\[\log K^*_i = \log K_i + \delta \log(\frac{ICT_i}{K_i}) + \gamma \log(\frac{NICT_i}{K_i}) \] \tag{8}

If ICT capital is more productive per monetary unit of services than other capital, one would expect \(\delta \) to be positive. On the other hand, if ICT capital does not have any differential impact, then \(\delta = \gamma = 0 \). Combining (6) and (8) one gets:

\[\log Y_i = \log A + \alpha (\log K_i + \delta \log(\frac{ICT_i}{K_i})) + \gamma \log(\frac{NICT_i}{K_i}) + \beta \log L_i \] \tag{9}

Assuming constant returns to scale \((\alpha + \beta = 1) \) and solving for \(\log(\frac{L_i}{Y_i}) \), gives

\[\log(\frac{L_i}{Y_i}) = \alpha_1 + a_2 \log(\frac{K_i}{Y_i}) + a_3 \log(\frac{ICT_i}{K_i}) + a_4 \log(\frac{NICT_i}{K_i}) \] \tag{10}

where \(a_1 = -\log A/\beta \); \(a_2 = (\beta - 1)/\beta \); \(a_3 = -\delta(1 - \beta)/\beta \);

\[a_4 = -\gamma(1 - \beta)/\beta \] \tag{11}
Equation (10) gives the basic relationship between labour productivity, labour intensity and ICT-capital intensity. If $\alpha_i < 0$, ICT-capital has a positive impact on labour productivity as labour intensity decreases. If $\alpha_i = 0$, the effect of ICT-capital is not different from non-ICT capital.

In fact, provided that $\phi_i < 1$ (as I assumed a Cobb-Douglas form, $0 < \beta_i < 1$), testing the null hypothesis that ICT capital is not different in its productivity than non-ICT capital is equivalent to a test of $\phi_i = 0$. If $\phi_i = 0$, $\alpha_i = 0$. If ICT capital is more productive than non-ICT capital, $\phi_i > 0$ implies that $\alpha_i < 0$ as $0 < \beta_i < 1$. Consequently, if ICT capital is more productive than other capital, it would lead to reduced labour intensity, ceteris paribus.

Data and Summary Statistics

The main problem encountered here is the measurement of ICT capital. ICT capital is measured by expenses in ICT that include spending on computer hardware equipment, computer software, computer services, maintenance support services, consulting services, training, telecommunication equipment and services. Each firm was asked to estimate such ICT investment. For firms that failed to indicate their ICT spending, I assumed that in each sector the share of ICT capital in firms’ total capital is constant so that the share of ICT capital in total capital was used for these firms even though ICT investment can be intra-industry specific.

The value added represents the firm’s output. Non-ICT capital is measured by the value of total capital minus the value of ICT capital. Total capital is estimated by the value of total physical capital plus expenditures in ICT that are not included in the capital stock expenditure. The total labour hours represent the labour variable. In Cameroon and according to the legislation, a working day lasts eight hours and there are five working days per week. The total number of labour hours for a given firm is measured by timing the number of employees by per annum working hours. The number obtained is diminished by the equivalent of nine days for public holidays. This brought us to about 2000 working hours per annum.

For further details, results are presented in three main steps. In the first step, I examine the relationship between ICT and production in both industrial and service sector. In the second step, I analyse this relationship using data from the secondary sector and the tertiary sector separately. Lastly, the analysis distinguishes small-size enterprises from large-size enterprises. Small-size enterprises are defined here as firms having less than 50 employees. Data are drawn from a sample of 81 enterprises of which 46 are from the industrial sector and 35 from the service sector. These enterprises are among those
contributing most to GDP and for which data were available at this time. The
time period is determined by the availability of data. Data are for the year
2004 and represent the most recent available data. The second type of data,
which are qualitative data, help in understanding the behaviour of firms in
terms of information about ICT, skills upgrading in ICT knowledge and
services computerization.

Table 2: Summary statistics

<table>
<thead>
<tr>
<th>K (in 10^6 CFA francs)</th>
<th>ICT (in 10^6 CFA francs)</th>
<th>NICT (in 10^6 CFA francs)</th>
<th>Employees</th>
<th>Ln(K/Y)</th>
<th>Ln(ICT/K)</th>
<th>Ln(NICT/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4503</td>
<td>1024</td>
<td>3479</td>
<td>342</td>
<td>0.398</td>
<td>-2.629</td>
</tr>
<tr>
<td>Median</td>
<td>3479</td>
<td>21</td>
<td>304</td>
<td>38</td>
<td>0.239</td>
<td>-2.374</td>
</tr>
<tr>
<td>Maximum</td>
<td>87959</td>
<td>53617</td>
<td>44929</td>
<td>13299</td>
<td>4.662</td>
<td>-0.494</td>
</tr>
<tr>
<td>Minimum</td>
<td>8.3</td>
<td>0.090</td>
<td>3.3</td>
<td>2</td>
<td>-3.441</td>
<td>-8.111</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>12433</td>
<td>5812</td>
<td>8362</td>
<td>1475</td>
<td>1.666</td>
<td>1.402</td>
</tr>
</tbody>
</table>

Empirical Results

The Output Elasticity of ICT Investment

For the overall sample, the empirical estimation of equation (3) provides
elasticities of value added with respect to ICT capital, non-ICT capital and
labour.

\[
\log Y = 5.27 + 0.043 \log(ICT) + 0.187 \log(NICT) + 0.829 \log(L)
\]

\[
(0.00) \quad (0.61) \quad (0.109) \quad (0.00)
\]

\[
R^2 = 0.716 \quad \text{adjusted } R^2 = 0.705 (*) = \text{probability } t \text{ statistics; } n = 81
\]

The dependent variable is firms’ value added. ICT capital, non-ICT capital
and labour are independent variables. Both independent and dependent variables
are expressed in logarithm form. Value added is most determined by labour.
According to results, a one percent increase in labour would lead to an increase
of 0.829 percent in productivity. This coefficient is significant at five percent
as the probability of t statistic is zero (less than 0.05).

The ICT impact on productivity is 0.043, meaning that if one increases
ICT capital by 10 percent productivity would increase by 0.43 percent. This
coefficient is not only smaller, but also not significant, meaning that in
Cameroon, ICT capital does not appear to affect productivity growth. Non-
ICT capital has a 0.187 impact on productivity. Again, this coefficient is not
significant. These results corroborate the fact that in developing countries,
labour, the abundant factor, is the main input used in production, and so
constitutes the best channel through which production can be increased.
Broadly speaking, capital (ICT and non-ICT capital) is not an important
determinant of productivity in Cameroon’s enterprises.
One important explanation for this finding is that firms do not operate at their full capacities. The rate of utilization of production capacities was estimated at about 60 percent in the industrial sector in 2002, according to the Department of Forecast, Ministry of Economy and Finance.

Equation (3) that was also estimated for the industrial sector gave the following:

\[
\log Y = 3.94 + 0.23\log(\text{ICT}) + 0.106\log(\text{NICT}) + 0.763\log(L)
\]

\[\begin{align*}
&\text{(0.018)} &\text{(0.132)} &\text{(0.607)} &\text{(0.001)} \\
R^2 &= 0.75 &\text{adjusted } R^2 &= 0.742 (*) = \text{probability t statistics; } n = 46
\end{align*}\]

In the industrial sector, labour still constitutes the main determinant of firms’ productivity with a coefficient of 0.76, meaning that in the industrial sector in Cameroon if we increase labour by 10 percent, value added would increase by 7.6 percent. This coefficient is significantly different from zero at five percent. As it can be observed, the impact of ICT (0.23) is not significant. The same conclusion applies to non-ICT investment whose impact on productivity is statistically equal to zero. Because of high unemployment and consequently low salaries, labour, the abundant factor, is more utilized for production and remains the most important determinant of output.

In the tertiary sector, estimations gave:

\[
\log Y = 4.79 + 0.0309\log(\text{ICT}) + 0.23\log(\text{NICT}) + 0.85\log(L)
\]

\[\begin{align*}
&\text{(0.0048)} &\text{(0.723)} &\text{(0.05)} &\text{(0.000)} \\
R^2 &= 0.762 &\text{adjusted } R^2 &= 0.738 (*) = \text{probability t statistics; } n = 35
\end{align*}\]

The 0.03 impact of ICT investment on productivity is not significant. Labour constitutes the main determinant of productivity growth. In fact, if one increases labour by 10 percent in the service sector, it is expected that productivity would increase by 8.5 percent. This coefficient is significant at five percent. This result indicates that as a developing country, and having an abundant unemployed labour force, Cameroon’s tertiary sector would increase its productivity by increasing employment. Non-ICT investments have a positive impact on productivity. The 0.23 coefficient is significant at 5 percent. To increase productivity, Cameroon’s tertiary sector has to increase labour and non-ICT capital. ICT capital would have no effect on productivity growth. This finding is in contradiction with what is really expected. In fact the tertiary sector is the one that is supposed to get important benefits from ICT investment as compared with other sectors. Equation (3) was also estimated for small size and large size enterprises. The following are the main findings.
Estimation of equation (3) for small size enterprises gave the following.

$$\log Y = 1.294 - 0.013 \log(\text{ICT}) + 0.184 \log(\text{NICT}) + 1.307 \log(L)$$

\[(0.61) \quad (0.91) \quad (0.23) \quad (0.000) \]

$R^2 = 0.53$ adjusted $R^2 = 0.49$ (*) = probability t statistics; $n = 45$

In small size enterprises, ICT capital has a non-significant negative impact on production. Labour remains the fundamental factor of output growth. Consequently, any increase in ICT investment would increase the total costs of firms without leading to any increase in productivity. Labour, as in other sectors or in other types of enterprises, remains the central determinant of output growth. Non-ICT capital is not a significant factor of output.

In large-scale enterprises, labour is the most important determinant of output while ICT investment does not have a significant impact on productivity. The main trend observed in industrial and tertiary sectors is also valid for small size and large-scale enterprises where estimations gave:

$$\log Y = 7.43 + 0.143 \log(\text{ICT}) + 0.137 \log(\text{NICT}) + 0.598 \log(L)$$

\[(0.0031) \quad (0.25) \quad (0.43) \quad (0.0041) \]

$R^2 = 0.56$ adjusted $R^2 = 0.52$ (*) = probability t statistics; $n = 36$

To sum up, ICT investment does not affect enterprises’ productivity in Cameroon. Any investment of this type would lead to an increase in production costs without affecting total output. Can such investment affect labour intensity and so labour productivity? The following paragraph gives an answer to this question. But one would expect that as ICT investment does not affect total productivity, it will not affect labour productivity even if some compensation in terms of increase and decrease in labour or capital productivity would lead to the same conclusion.

The Impact of ICT on Labour Intensity and Labour Productivity

In order to recapitulate regarding the impact of ICT investment on labour intensity and labour productivity, Equation (10) was estimated for the 81 selected enterprises of the sample. Empirical results gave the following:

$$\log(L/Y) = -7.419 + 0.302 \log(K/Y) + 0.076 \log(ICT/K) + 1.37 \log(NICT/K)$$

\[(0.00) \quad (0.0001) \quad (0.507) \quad (0.156) \]

$R^2 = 0.20$ adjusted $R^2 = 0.17$ (*) = probability t statistics; $n = 81$

The value of ICT capital as a proportion of total capital has a positive impact on labour intensity. The coefficient is 0.076, meaning that if ICT intensity
increases by 10 percent, labour intensity would increase by 0.76 percent. This implies that the stock of ICT capital has a negative impact on labour productivity as labour intensity increases. Hence as firms increase the share of ICT capital stock to total capital stock, labour intensity would increase and labour productivity would decrease. For a given output, increasing labour intensity implies increased labour units and hence low labour productivity.

The coefficient measuring the impact of ICT intensity on labour intensity and labour productivity is not significant; outlining the fact that ICT intensity does not affect labour intensity and labour productivity in Cameroon’s economy. The corresponding coefficient for non-ICT capital is 1.37. This coefficient, which is greater than the ICT coefficient, is not significant. The impact of ICT capital is therefore not different from the impact of non-ICT capital. However, results show that firms would benefit more by increasing the capital (total capital) output ratio rather than ICT capital share as percentage of total capital stock.

In the industrial sector, empirical estimation of equation (10) gives:

\[
\log\left(\frac{L}{Y}\right) = -7.483 + 0.45\log\left(\frac{K}{Y}\right) + 0.025\log\left(\frac{ICT}{K}\right) + 2.48\log\left(\frac{NICT}{K}\right)
\]

\[
(0.00) \quad (0.0003) \quad (0.90) \quad (0.20)
\]

\[R^2 = 0.33 \quad \text{adjusted } R^2 = 0.29\quad (*) = \text{probability t statistics}; \quad n = 46\]

In the industrial sector, ICT intensity has a 0.02 non-significant impact on labour intensity. This seems realistic since in this sector and especially for Cameroon, firms need non-computerized equipment and machines to transform their products. ICT capital is just used to improve the productivity of both labour and non-ICT capital. This is why the impact of capital-output ratio (0.45) is significant. As in the previous case, non-ICT investment does not have a significant impact on labour intensity and labour productivity.

For the tertiary sector, estimation gives:

\[
\log\left(\frac{L}{Y}\right) = -7.75 + 0.080\log\left(\frac{K}{Y}\right) + 0.052\log\left(\frac{ICT}{K}\right) + 0.449\log\left(\frac{NICT}{K}\right)
\]

\[
(0.000) \quad (0.47) \quad (0.71) \quad (0.68)
\]

\[R^2 = 0.019 \quad \text{adjusted } R^2 = -0.07 \quad (*) = \text{probability t statistics}; \quad n = 36\]

In the service sector, there is no significant impact with regard to ICT intensity, non-ICT intensity or capital-output ratio on labour intensity and labour productivity, as indicated in the above regression, because of the insignificance of corresponding estimated coefficients. Hence ICT investment does not have any impact on labour productivity in Cameroon.
As seen from the following regressions, ICT intensity does not significantly affect labour intensity and labour productivity in small-size enterprises. In large-scale enterprises, non-ICT capital intensity is an important and significant determinant of labour intensity and labour productivity. In large-scale enterprises, the impact of non-ICT intensity (2.85) is significant at five percent. Consequently if non-ICT intensity increases, labour intensity would increase and labour productivity would decrease.

In small size enterprises, the following estimations are obtained:

\[
\log(L/Y) = -7.84 + 0.41\log(K/Y) + 0.028\log(ICT/K) - 0.67\log(NICT/K)
\]

\[
\begin{array}{ccc}
(0.000) & (0.0001) & (0.84) & (0.61) \\
\end{array}
\]

\[R^2 = 0.33 \text{ adjusted } R^2 = 0.28 \quad (*) = \text{probability t statistics; } n = 45\]

And in large size enterprises:

\[
\log(L/Y) = -7.22 + 0.18\log(K/Y) + 0.06\log(ICT/K) + 2.85\log(NICT/K)
\]

\[
\begin{array}{ccc}
(0.000) & (0.11) & (0.72) & (0.04) \\
\end{array}
\]

\[R^2 = 0.20 \text{ adjusted } R^2 = 0.12 \quad (*) = \text{probability t statistics; } n = 36\]

Some Implications

The results indicate that ICT is not a significant determinant of productivity for enterprises in Cameroon. Consequently, any increase in ICT capital would decrease firms’ performance, as additional costs would just increase total costs without an increase in total output. Hence, firms’ performance would decline with an increase in ICT investment. This result contradicts the main findings in developed countries, where increasing ICT investment contributes to additional growth of output. The situation might be explained by the fact that ICT is not well allocated among firms’ activities. Also, ICT investment, as many other investments, can have drawbacks if utilised in non-efficient ways. This is the case for example when people only use the internet for sending e-mails to their friends instead of using it to prospect for new markets. This can also be the case when users have little knowledge about the alternative uses of ICTs. Also, it is important to note that as firms do invest very little in training and skills as well as in development, such results can be predictable. As an example, qualitative data indicate that about all firms (97%) visited were using computers in one way or another. Accounting was the service that utilised computers the most (about 82% of firms). Inventory for raw materials and final products occupied the second position with about 38 percent of firms. These activities however are not producing value added but do indirectly support other activities by reducing time. Production is weakly computerized in Cameroon’s economy while this activity is the main channel through which productivity can be improved.
Less than 50 percent of firms have access to the internet. For those having such access, about 90 percent use it for personal e-mail (not in connection with firms’ activities) instead of contacting new clients or marketing new products, meaning that much production time is wasted on the internet, so that the latter has a negative impact on production. In fact, the internet should be used for gathering information on new technologies, new products and new markets. Some companies have embarked on training their personnel in computer skills, but this training is usually limited to administrative tasks. For these reasons and many others, it is expected to get results that are close to the main findings of the present analysis.

Another implication of the findings of the study is that as ICT intensity does not significantly affect labour intensity and labour productivity, more investment in ICT would not lead to either more recruitment in Cameroon’s enterprises, or to a greater reduction in employment. Consequently, ICT investment has no impact on the level of employment. Only non-ICT capital has a positive impact on the level of employment in Cameroon’s enterprises. The level of employment would increase with the capital-output ratio. This level of employment being the more important determinant of productivity growth, enterprises would benefit from increasing the number of employees if they want to accelerate their output growth.

Concluding Remarks
Using data from Cameroon, the analysis shows that investment in ICT has no impact on productivity, as the estimated impact of ICT investment on productivity is not significant. Also, ICT investment has no impact on labour productivity and labour intensity as the ICT capital ratio has no significant impact on the labour output ratio. These findings differ from Shymal Chowdhury (2002), who found that ICT investment has negative and significant impacts on labour productivity in East Africa. For the sample considered, labour remains the key determinant of value added growth in Cameroon. This seems to be realistic as labour is abundant in the country, leading to relatively low salaries. Since labour is the abundant factor, it is profitable for firms to increase their production by recruiting more units of labour. If ICT investment contributes to rapid globalization of economies, it does not contribute to productivity growth in Cameroon. One of the main reasons can be the diffusion impact, as ICT is a relatively recent phenomenon for enterprises in Cameroon. In fact because it can be expected that countries with recent and low ICT penetration (Cameroon for example) perform lower than those with long-term, deep and rapid penetration of ICT, the positive and non-significant impact of ICT on productivity growth found in the case of Cameroon could become significant in the long run.
One of the limitations of the above analysis is that the impact of ICT on product quality improvements is not taken into account. In fact, if ICT can affect productivity and labour intensity, it is important to note that information and communication technologies are important sources of product quality improvements. Another limitation is due to the model used and assumptions adopted. Also, as the analysis only considers a single year, one may get different results when considering a different year. Measures of different variables can also affect results.

References

International Monetary Fund, 2001, World Economic Outlook, October.

